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INTRODUCTION 

New battery types are being developed at 
breakneck speed, competing on 
performance, cost and sustainability.  
Novel chemistries and technologies 
require thorough testing to understand 
properties of the battery – not only at its 
deployment but also during the use 
phase and after its decommissioning. This 
is why battery prognostics and health 
management (PHM) has been gaining 
much prominence in the last decade, 
signall ing its value to industry and 
society.  Accurate diagnosis and prognosis 
of battery performance lies at the heart of  

the field. With fast and accurate PHM, 
time-to-market and warranty risks of 
novel batteries are reduced, whilst 
battery l ifetime and recyclabil ity are 
increased.  

However,  so far,  accurate prognosis and 
diagnosis of battery performance remains 
a time-consuming and complex task. This 
market intell igence report will  give 
insight into the state-of-the-art of battery 
PHM, its main approaches, challenges, 
and trends.
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OVERVIEW 

The term Prognostics and Health 
Management (PHM)  originates from the 
1990s military aviation domain and has 
been picked up in the battery f ield during 
the last decade [1] .  While prognostics  aim 
to predict the future status of a syste m, 
health management (or  diagnostics)  
uses generated information from  the 
energy storage system to diagnose 
potential issues,  and act upon them to 
keep the battery in a healthy state .   

Prognostics and Health Management is 
used across all  battery lifetime stages.  
Roughly speaking, at every li fetime stage, 
one begins by asking themself :  

“What will  this battery’s state look 
l ike, in X years?”  

Figure 1 shows the dif ferent battery 
lifet ime stages and the respective 
parameters investigated in PHM.

   F igure 1 :  Parameters  invest igated in  PHM over a battery 's  l i fet ime  

The similarities of PHM across battery 
lifet ime stages lie in the topic s 
addressed. In general,  these include 
battery lifet ime, safety,  rel iability ,  and 
performance (see table 1) .   
The main differences between PHM  
across lifetime stages are the focal 
parameters applied. While R&D focuses 
on the optimisation of  design parameters,  
the environmental condition parameters 

of batteries are used to support health 
management (see table 1) .   Also,  logically,  
the testing environment across lifetime 
stages is  different.  Battery prognostics 
during R&D happens mostly in laboratory 
environments  on battery test benches,  
whereas health management could be a 
virtual model within the EV Battery 
Management System (BMS).  
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Table 1 :  Focal  PHM parameters  invest igated over battery  l i fet ime phases  

 

 

  

 

 

 

 

 

 

 

 

 

 

DATA ACQUISITION AND HEALTH INDICATORS 

In order to evaluate the state of health 
(SoH) of any battery with sufficient 
accuracy,  it  has to be tested. The most 
common test is  performed by measuring 
a set of parameters during charge and 
discharge cycles.  These parameters can 
be divided into:  

•  Direct health indicators :  voltage, 
current,  temperature and 
resistance,  

•  Indirect health indicators :  
features extracted by applying 
signal processing techniques,  
incremental capacity,  and 
different ial voltage analysis  [2] .  

As explained in the chapter above, this 
data can be acquired to analyse and 
prognose the battery state in different 
phases of its  l ife.  In the design and 
manufacturing phases ,  cycling tests are 
performed on the cell ,  module,  and 
battery pack levels in laboratories 
(testbeds) ,  s imulating various 

operational conditions,  e.g. ,  operational 
temperature range and vibrations.  

During the use phase, the direct 
indicators are recorded through sensors 
connected to the battery management 
system (BMS) in the vehicle .  A BMS 
based on this information actively 
balances the charging and discharging 
parameters of each cel l ,  making sure they 
stay within safe operational regions 
(more information on BMS and sensors 
can be found in this dedicated MIR 
here ) .  Apart from the active function of 
BMS, it can also store the cycling data,  
which can be extracted on-site by a 
battery expert or wirelessly uploaded 
online by the EV computer.  The voltage, 
current and temperature curves resulting 
from cycling are then processed using a 
variety of techniques to obtain additional 
features allowing for a more precise 
estimation of SoH.  

FOCAL PARAMETERS TOPICS ADDRESSED BY PHM 
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Chemistries ,  battery design and 
manufacturing features :  electrode 
microstructure,  pack design 
dimensions ,  coating thickness,  
drying temperature.  

Real-time usage data:  actual 
environmental conditions,  user 
behaviour (charge-discharge 
cycles) ,  accidents. 
 

 
Historical usage data + additional  
characterisation outside vehicle 
for increased PHM accuracy 

How can we design a battery that  
has a long lifet ime, high level of  
safety,  reliability ,  and 
performance? 

 

How can we increase battery 
lifet ime, performance,  safety,  and 
reliability?  

What is  the battery ’s state of 
safety,  and remaining useful l i fe?  
When should we 
recycle/repurpose the battery? 

https://projectcobra.eu/wp-content/uploads/2021/02/COBRA-MARKET-INTELLIGENCE-DEC-JAN_5076.pdf
https://projectcobra.eu/wp-content/uploads/2021/02/COBRA-MARKET-INTELLIGENCE-DEC-JAN_5076.pdf
https://projectcobra.eu/wp-content/uploads/2021/02/COBRA-MARKET-INTELLIGENCE-DEC-JAN_5076.pdf
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PROGNOSTICS METHODS 

The data gathered from tests not only 
enables the identi fication of the current 
SoH of the battery,  but also help to 
prognose its ageing ,  i .e. ,  the expected 
reduction of its  capacity and available 
power in the future.  The degradation of 
Li-ion batteries can be divided into two 
types:  charge-discharge cycling  (based 

on character and number of cycles,  
predominant in EVs) and calendar 
ageing (based on time of usage and 
operating conditions,  most important in 
applications with shorter operation 
periods,  e.g. , uninterrupted power 
supply) [3] .  

The industry needs the most accurate 
prognoses (with an acceptable error of 2 -
5% [4])  to underpin warranties,  schedule 
maintenance service and develop health -
conscious battery management systems. 
There are three main approaches for 

battery prognostics :  physics-based ,  
empirical ,  and data-driven .  The table 
below explains the characteristics,  
advantages,  and disadvantages of these 
approaches [4] .  

  

BATTERY TESTING VS VIRTUAL MODELLING 

Prognostics  during battery development  is  a complex exercise  that requires 
careful planning and time :  one must repeatedly test batteries over specific  
conditions until  they’re confident enough of  the battery’s  p erformance and 
safety .  As you can imagine, t esting for multiple battery chemistries  and designs 
adds up to the task at hand. Not only that –  we cannot simulate al l possible 
operational conditions  and user behaviours  (e.g. ,  temperatures, charging and 
discharging speed),  s ince every new variable would increase the number of tests .  

Here,  virtual  models have the potential  to reduce battery testing time. However,  
it  is  important to understand what virtual models can and cannot accurately 
estimate. Therefore,  it  remains complicated to accurately predict the battery’s  l ife  
while keeping a reasonable time-to-market .  Especially safety testing is  hard to 
replace since many safety tests are mandatory by law.  

 

 

 

Gustavo Pérez Rodríguez  
Project Manager at Applus+ IDIADA 

Battery testing,  inspection, and certi f ication  

 

https://www.applusidiada.com/global/en/
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Table 2:  Strengths  and weaknesses  of  PHM approaches  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recently a lot  of attention has been 
drawn to hybrid approaches  which 
combine strengths of the three methods 
presented above. Physics-based models 
are detailed and insightful,  whereas data-
driven approaches are less complex to 
build and have a high level of accuracy.  
Hybrid approaches  make the l ink 
between both, by ‘ f ine tuning’ physics-
based models with a data-driven 
approach [5] .  One such example is  to use 
field data to complement complex 

physics models and expensive testbed 
data with EV usage data,  which is 
inexpensive and comprehensive due to 
availability in large numbers and 
coverage of all  types of usage behaviours  
[5]  Hybrid approaches can be divided into 
three categor ies according to the 
purposes:  improving the performance of 
fi ltering methods, generating future 
observation data, and processing raw 
data [4] .   

 

STRENGTHS WEAKNESSES 

 

 

 

APPROACH 

Physics-based 
(mechanistic):  models 
s imulating and analysing 
degradation behaviour, 
e.g. ,  thermal behaviour,  
sol id electrolyte 
interphase (SEI) growth,  
active material  losses , 
and l ithium plating.  

Empirical 
(phenomenological):  a  
capacity fade curve 
parametrised by 
operating conditions, 
e.g. ,  charge throughput,  
equivalent cycle number 
or time.  

Data-driven  
(AI-based):  uses 
measurements such as 
the current and voltage 
directly as inputs to a 
machine learning model 
in order to learn the 
remaining use li fe as the 
output.  

• Very detai led 
information about the 
processes occurring 
inside the battery which 
can be used not only to 
predict degradation but 
also mitigate it through 
battery design and 
management.  

• High precision. 
 

• Simplif ies the prediction 
of  degradation of  Li -ion 
batteries by focusing on 
changes in the specif ic  
measures of 
degradation,  such as 
internal  resistance or 
cel l  capacity.  

• Enables  predictions 
using only early -cycle 
data without the need 
for complex 
electrochemical models .  

• Can be used in real -time 
applications.  

• Complexity of  the 
models and relative 
paucity of avai lable data 
makes it hard to verify 
the accuracy, both of 
the model itself  and of  
i ts  parametrisation. 

• Requires expert 
knowledge to develop 
physical  models 
and are less flexible 
than data-driven 
methods.  

• They can fai l to account 
for the complexity of  Li -
ion battery degradation, 
which usually  depends 
on more than just time 
and cycle number.  

• Requires long historical  
data (at least 25% along 
the trajectory to end-of-
l i fe) .  

• Insuff ic ient or biased 
training data can lead to 
inaccurate predictions 
or false results.  

• Comprehensive dataset 
with various ageing 
patterns is required to 
allow for general i sation 
of the method.  



MARKET INTELLIGENCE REPORT  

 

 

MAY 2022    7 

CHALLENGES FOR BATTERY PHM 

As is  the case with different topics in the battery field,  the unprecedented interest in 
high-performance energy storage puts increased pressure on existing PHM methods , 
revealing their bottlenecks .  Most of them lie in the lack of scalable and accurate 
prognostics  techniques,  l imited tools  and technologies  used nowadays,  as well as 
governance and cooperation in industry and research.  

DATA GAPS  

The two main ways to retrieve data on 
battery properties  (testbeds and field 
data) are either incomplete or hard to 
come by.  The field data  from electric 
vehicles is  considered by some 
researchers as difficult to work with,  due 
to their high uncertainty and low quality 
caused by long periods of missing data,  
less accurate sensors in EVs,  cell -to-cel l 
variations within a pack or modules and 
extreme C-rates [4] .   

Furthermore, laboratory test data  is 
often generated for modelling projects 
but less often shared with others.  This 
creates a cumbersome working 
environment for researchers who do not 
have access to a lab or the budget to 
acquire testing data .  Namely,  a wide 
variety and abundance of data is much 
needed to calibrate or train virtual 
models  [6] .  Because of that,  many 
researchers use the few publicly available 
battery datasets to verify their prediction 
algorithms, e.g. ,  dataset pub lished by the 
Prognostics Center of Excellence at NASA 
Ames [7] .  

SCATTERED KNOWLEDGE IN 
INDUSTRY AND RESEARCH 

Battery testing data is not shared much 
between value chain partners because of 
commercial interests .  Also ,  data sharing 
practices and standards are not in place 
as opposed to other  industries ( e.g. ,  the 
semiconductor industry [8]).  
Furthermore, a lthough the potentia l 
quantity  of cycling data produced in 
electric vehicles is  enormous, it  is  only 

accessible by the OEMs controlling the 
BMS. Most manufacturers do not share 
the data from any stage of battery 
lifet ime, justifying it with security 
reasons.  Of course,  full  ownership o f 
cycling data also gives them a 
competitive advantage, allowing them to 
develop better battery design and 
vertically integrated end-of-l ife 
processes.  Unfortunately,  this also limits 
the number of stakeholders that  can 
make use of the remaining battery li fe 
(e.g. ,  recyclers , repurposers and 
remanufacturers) .  Moreover,  due to the 
rapid development of battery chemistry 
types and designs,  research knowledge 
on the prognostics models  is  scattered 
over different research and test centres.  
This further adds to the complexity and 
fuzziness of industry and research.  

INSUFFICIENT SENSITIVITY OF 
HARDWARE 

Battery cells  and their packs are complex 
and dynamic systems. For example,  cells 
can move, crack,  and expand during 
usage which is  difficult to accurately 
assess with current sensors used in 
prognostics .   Both sensors used in 
physical testbeds and BMS systems 
cannot accurately account for  severa l 
complex behaviours of cells .  Dismantling 
the battery pack could provide insight 
but this is  not desirable during testing 
and especially during usage. Besides,  it  is 
desirable to 1)  know what the worst -
performing cell  in the battery is  and 2) 
what is  happening inside that cell .  This is 
useful to develop better battery designs 
or health management strategies  during 
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the usage phase. Furthermore, while cel l 
testing in laboratory environments allows  
the use of  multiple more elaborate 
sensors per cell ,  this is  not  feasible in cars 
due to increased costs and space/weight 
constraints .  

COSTLY AND TIME-CONSUMING 
TESTING 

Ideally ,  OEMs would age the batteries 
over their whole l ifet ime before bringing 
them to market.  However,  this would 
dramatically increase their  time-to-
market,  s ince the life expectancy of most 
batteries is  between 14 and 18 years  [8] .  
Continuous cycling is  also extremely 
time-consuming. As a rule of thumb: one 
discharge-charge cycle at 1C takes 2 
hours.  Some of  the newest batteries  are 
estimated to sustain roughly 10,000 
cycles [9] .  In theory,  this means  testing a 
single battery over a  continuous cycling 
program could take 830 days.   

To compensate for this ,  battery ageing 
can be accelerated , which diverts further 
from actual use conditions.  Extreme 
operating conditions,  such as high C-
rates or elevated temperatures,  are often 
used to accelerate ageing.  However,  even 
with accelerated ageing, it  can be slow to 
assess the degradation impact of 
individual manufacturing parameters 
such as materials  and processing choice s 
or design factors such as cell s ize,  
number of layers and electrode 
thicknesses,  and formation protocol .  
Furthermore, rest periods between cycles 
have been shown to benefit the overal l 
battery life,  hence the batteries designed 
based on accelerated ageing results may 
have longer lifespans than predicted [10] .  
Using testbeds is  also inflexible and 
expensive because of the signal 
acquisition systems needed [7] .  I t  
requires a lot of deep expertise and 
specialised equipment.   

HIGH COMPLEXITY OF VIRTUAL 
MODELLING 

Due to a multitude of factors influencing 
battery performance  (chemistries,  
composition, manufacturing processes,  
battery pack design, charge-discharge 
profile,  etc.)  and various degradation 
mechanisms (solid electrolyte interphase 
(SEI)  growth, active material losses,  and 
lithium plating),  the prognostics models 
require complex and power-consuming 
calculations.  Because of  that,  physical 
models are sometimes simplified to 
reduce cost –  e.g. , some physics-based 
models (falsely) assume homogenous 
degradation of cells  throughout the pack, 
whereas others do not consider the 
change of usage conditions that one 
battery might endure throughout its 
l ifet ime [7] .  Here,  data-driven models are 
in general highly accurate for the testbed 
or fie ld data on which they are trained, 
but they fail to provide much accuracy 
beyond similar usage conditions.  

UNHARMONISED STANDARDS 

Car and battery manufacturers must fulfil  
safety testing to certify their  batteries 
and EVs, which prohibits faster 
prognostics .  It  takes expertise and time 
to figure out the necessary regulations 
per battery application and country of the 
corresponding market.  Subsequently,  
even if one manages to develop a 
complex simulation of safety features,  
regulations ( e.g. ,  ECE R100) wil l  require 
the physical demonstration of safety  
which diminishes the advantages of 
using elaborate models .  On the side of 
battery performance, not much is 
standardised. In general,  battery 
manufacturers do their own specific 
testing which leads to different battery 
qualities vary across industry.  Figure 3 
shows the differences in mandatory 
performance testing across the globe.  
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Figure 1 :  Mandatory  battery  per formance test ing  [11]  

 

 

 

 

  

BATTERY PROGNOSTICS FOR 2N D  LIFE APPLICATIONS 

With the rise of e-mobility, our society is  awaiting an enormous return  of  used 
batteries  in the years to come. Eurecat works to make the most out of those 
batteries, by optimising the process from battery’s f irst l i fe to their next stage.  

To get an idea of the battery’s remaining useful life (RUL) ,  it  is crucial  to 
receive historical data on the battery’s l i fetime  which is typically stored in the 
EV Battery Management System. This information not only gives us the cycling 
data but even more importantly the log of errors and accidents  that occurred 
to the battery .  

Further tests after battery extraction can supplement this data for more 
detailed and accurate results . The main challenge here is to develop a 
methodology to determine the state of a battery with the minimum number 
of key parameters ,  to reduce the time needed for classification and selection 
of their most suitable 2 nd  li fe application.  

Just l ike prognostics  in the development phase , the estimation of remaining 
l ife can be helpful in determining the right operational conditions and health 
management strategies  in the 2n d  l i fe application. 

 

 Victoria Julia Ovejas Benedicto & Marco Amores 
 Advanced Researchers at Eurecat 

Battery characterisation for circular applications   
 

https://eurecat.org/
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SOLUTIONS AND TRENDS FOR BATTERY PHM 

ACCELERATED TESTING AND 
TESTBED MANAGEMENT 

Since battery testing in testbeds is  time-
consuming, it  is  important to make the 
best use of the battery test  data 
collected. Here,  a smart design of 
experiments is  key.  Approaches are 
underway in research to use fewer tests 
while increasing model accuracy .  Several 
examples include deep-learning, 
Bayesian optimisation protocols and 
Gaussian process regression [12]–[14] .  
Deep learning methods are particularly 
powerful in f inding battery ag eing 
features [5]  which can - colloquial ly 
speaking - be compared to hidden tell -
tales  of a battery ’s  ageing trajectory.  
Whereas the first two approaches are 
used after testing, Bayesian optimisation 
can be applied to explore and exploit  the 
next round of experiments  performed in 
battery testbeds .   

ADVANCED AND WIRELESS 
SENSORS  
Advanced battery sensing technologies 
are being developed at a rapid pace to 
provide more detailed and insightful data 
on a battery’s  state.  Some examples 
include high-precision contact-type 
displacement sensors or fibre optic 
sensors,  both fitted to measure strains 
within the battery pack [15] .  This  sensor 
feature is  particularly of interest in the 
unstable motion environment of an EV.  
Besides the research towards advanced 
sensors ,  market players are introducing 
wireless sensors and BMS to reduce the 
extent of wiring needed in a battery pack, 
as well as more robust signalling between 
BMS and sensors .  The saved space from 
reduced wiring could allow for more 
sensors or more cells  in the pack.  

CLOUD-CONNECTED AND 
ADAPTIVE MODELS / DIGITAL 
TWINS 

Within the domain of battery health 
management,  cloud-connected and 
adaptive battery BMS models have 
surfaced in the last few years .  These 
models can be updated and calibrated by 
the engineers remotely ,  and the data 
generated by the sensors in the vehicle  
can be accessed at any time. This creates 
flexibility for manufacturers to  have live 
insights  into a  battery’s  health.  Current ly ,  
most BMS can only export their data 
through physical connection with the 
receiver (e.g. ,  workshops or private 
charging points) ,  which reduces 
flexibility .   

SUPPLEMENTARY DATA SOURCES 

The untapped potential of  recovered field 
data and the creation of  synthet ic data is 
under investigation [16] ,  [17] .  Research 
has shown advantages of  supplementing 
field data with  a recovery process 
including machine learning and a small 
portion of testbed data.  This recovery is 
needed since rea l-time data from field 
applications often does not represent the 
whole cycle as batteries are rarely 
charged and discharged completely  [16] .  
Synthetic data,  a nascent yet promising 
source of data ,  is  created using existing 
test data.  It  scans the potential 
degradation of three key features ( loss of 
l ithium inventory ,  loss of active materia l 
in the negative electrode, and the 
positive electrode),  and translates that 
back into a voltage response, through a 
mechanistic model.  Thereby it creates a 
map of all possible degradation 
trajectories,  caused by these three 
influential degradation mechanisms [17] .  
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POTENTIAL REGULATORY 
IMPROVEMENTS 

In the 2020 Battery Directive proposal 
[18] ,  the EC stated its  intention to 
harmonise battery performance testing 
across the EU to remove internal trade 
barriers .  Here,  the focus of those tests  
lies  on the product requirements put 
forth in the same proposal.   
Moreover ,  as noted in our  previous 
Market Intelligence Report on Reverse 

Logistics ,  the proposal states that 
purchasers of a battery should be able to 
get insight into its  BMS and 
corresponding historical data.  This is  key 
to accurately diagnosing a battery’s 
health at its  end of l ife.  To pinpoint the 
data in question, a  set of  parameters is 
included in the proposal’s  annex ,  
covering both the state of health and the 
expected lifet ime of batteries .  

 

  

Oriol Gallemi i  Rovira  
Head of the storage,  mobil ity,  and battery l ine at Eurecat 

Technology Centre of Catalonia  
 

COMBINING A BOTTOM-UP AND TOP-DOWN APPROACH 

Another solution to the bott lenecks of battery prognostics  field is  an approach 
undertaken by the COBRA project :  developing a physics-based model  that 
would not only accurately explain what is  happening in a single cell layer,  but  
also in the full  cell  and the whole battery pack .  Creating a reliable cell  
degradation model is  one thing but scaling it up to subsequent module and pa ck 
level is  something else entirely.  Each additional layer adds complexity due to the 
wide array of battery dynamics involved.  

COBRA’s approach is  to validate the physics -based (bottom-up) model with a 
top-down  model based on empirical tests of the comple te battery.  As a result,  
these two models should converge to  one. Such a solution would increase the 
accuracy of prognosis  and provide insightful information for the new battery 
designs. 

Oriol Gallemi i  Rovira  
Head of the storage,  mobil ity,  and battery l ine at Eurecat 

Technology Centre of Catalonia  
 

https://projectcobra.eu/wp-content/uploads/2022/03/COBRA-MI-report-Reverse-Logistics-MARCH-2022.pdf
https://projectcobra.eu/wp-content/uploads/2022/03/COBRA-MI-report-Reverse-Logistics-MARCH-2022.pdf
https://eurecat.org/
https://projectcobra.eu/
https://eurecat.org/
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TECHNICAL DEVELOPMENTS 

PREDICTION USING DIGITAL TWIN –  REDTOP RESEARCH PROGRAMME 

50 electric taxis  have collectively travelled 500,000km to provide da ta for REDTOP 
automotive research programme: Real-time Electrical Digital Twin Operating 
Platform. The cars were equipped with a data-collecting IoT device connected to 
cloud-based software provided by UK company Silver Power Systems. Researchers 
from the Imperial College used this data to develop a digital twin of the EV batteries  
showing real-time battery performance, SoH and enabling prediction of battery  
lifespan. The research was funded by the Advanced Propulsion Centre UK (APC).  

READ MORE 

ML-BASED FRAMEWORK FOR ONLINE PREDICTION OF BATTERY AGEING  

A recent paper published by Swedish and American researchers  introduces a novel  
machine learning-based battery lifetime prediction framework.  The framework uses 
features coming from histogram data instead of time series  to develop offline global 
models .  This saves computational power and memory in the predictions under 
generalised conditions .  The t ime needed to predict the ageing trajectory of batteries  
in the corresponding datasets was less than 3.2 s.  Secondly,  the framework is  
equipped with an online model which feeds from the 7296 PHEVs fleet data and 
adapts the selected global model for cell individualised prediction.  The online 
algorithm reduced the errors by up to 13.7%.  

 

READ MORE 

SELF-HEALING BATTERIES UNDER DEVELOPMENT BY ISRAELI COMPANY  

An Israeli company StoreDot has patent ed a method of battery reconditioning by 
temporarily deactivating individual cel ls or cell strings ,  s low and deep discharging,  
followed by slow charging to increase their capacity and safety.  Currently ,  the cells  
can be deactivated by the BMS, but this change is  usually permanent until the 
corresponding cell or module is  replaced in the workshop.  

READ MORE 

https://theenergyst.com/ev-trial-results-in-worlds-most-advanced-battery-digital-twin-capable-of-predicting-battery-lifetime/
https://www.sciencedirect.com/science/article/pii/S0378775322001331
https://www.electrive.com/2021/12/03/storedot-announces-self-repairing-battery-cells-under-development/
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MARKET DEVELOPMENTS 

WIRELESS BATTERY MANAGEMENT SYSTEM  BY GENERAL MOTORS 

General Motors has developed a wireless 
communication system between the BMS, and 
batteries installed in their EVs.  The system gives 
access to multiple channels and broad 
bandwidth,  allowing to run battery pack health 
checks in real-time. GM’s  solution reduces 
wiring within the batteries by up to 90% 
( lowering the vehicle’s  weight)  and el iminates 
the need to redesign wiring configurations 
every time the company develops a new vehicle.  
The functionality  of  the new platform has been 
presented in the GMC Hummer EV Pickup and 
SUV available in 2023.   

READ MORE 

BATTERY DEGRADATION TOOL WITH DATA FROM 6300 VEHICLES 

How do popular EVs compare when it comes to battery lifetime? A free to use tool  
provided by GEOTAB allows you to check the degradation speed of 24 EV models over  
the last 10 years ,  based on data collected from 6,300 corporate fleet and consumer 
vehicles.  The company observes that good thermal management protects against 
degradation, e.g. ,  the 
2015 Tesla Model S  
with a liquid cooling 
system has an average 
degradation rate of 
2.3% a year, while the 
2015 Nissan Leaf with 
a passive air-cooling  
system degrades 
every year by 4.2%. 

READ MORE 

PREDICTIVE ANALYTICS SOFTWARE HELPS TO MANAGE EV FLEETS  

German battery analytics software company Twaice has secured a Series B funding of  
$26 million.  The start-up is  building a battery analytics platform which helps 
companies that operate a f leet  of EV buses to monitor  and forecast the state of the 
battery packs of each of their vehicles .  Twaice also supports battery d esign engineers 
with the data they collect,  in order to reduce testing effort,  assess charging 
strategies ,  depth of discharge and different cell strategies.  

READ MORE 

https://www.autonews.com/mobility-report/gm-figures-out-how-improve-battery-monitoring
https://www.geotab.com/fleet-management-solutions/ev-battery-degradation-tool/
https://techcrunch.com/2021/05/19/twaice-raised-26m-to-scale-its-battery-analytics-software/
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POLICY DEVELOPMENTS 

NEGOTIATIONS OF THE NEW BATTERIES REGULATION BEGIN 

The EU Counci l has adopted its  negotiating position regarding the new battery  
regulation proposed by the EU Commission,  which is  expected to replace the Battery 
Directive from 2006. The Council strengthens the fundamentals of the document 
elaborated with the industry,  focusing on battery passport,  tight restrictions for 
hazardous substances  and extended producer responsibility .  Now the document will  
be negotiated with the Members States in the Parliament,  aiming to agree on the 
final text in first reading.  

READ MORE 

AN UPDATE OF THE EUROPEAN STRATEGIC ACTION PLAN ON BATTERIES 

During the High Level  Industrial meeting held in Brussels on the 23 r d  of March, the 
European Battery Alliance brought together key stakeholders of the battery value 
chain,  summarised the achievements so far ,  and proposed an updated Strategic 
Action Plan for the year 2030. By 2021,  the total level of investment in the EU battery 
value chain 
amounted to 
€127 bill ion,  
while a further  
€382 bill ion is  
needed to create 
a self-sufficient  
battery industry 
by 2030.  

READ MORE 

STRINGENT SAFETY STANDARD MAY SLOW DOWN EV GROWTH IN INDIA? 

In 2021,  India adopted a battery safety testing standard AIS 156,  which appears to be 
the strictest in the world.  For example,  it  includes a fire resistance test where the 
battery is subject to direct and indirect flame for over two minutes.  This may cause 
delays in the development and roll -out of new electric vehicles in India but would  
also decrease the number of  fire accidents that have recently occurred in India ,  as 
explained by the nat ional Society of Manufacturers of Electric Vehicles (SMEV).   

READ MORE 

https://www.consilium.europa.eu/en/press/press-releases/2022/03/17/sustainable-batteries-member-states-ready-to-start-negotiations-with-parliament/
https://8941304.fs1.hubspotusercontent-na1.net/hubfs/8941304/High-Level%20Industrial%20Meeting%20Joint%20Statement/Joint%20Statement%20EBA%20HL%20Industrial%20Meeting%2023%20March%202022-Final1.pdf
https://economictimes.indiatimes.com/industry/renewables/ev-growth-may-slow-down-as-safety-norms-are-tightened/articleshow/90617891.cms?from=mdr
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